Search results for " plant traits"
showing 3 items of 3 documents
A Methodology to Derive Global Maps of Leaf Traits Using Remote Sensing and Climate Data
2018
This paper introduces a modular processing chain to derive global high-resolution maps of leaf traits. In particular, we present global maps at 500 m resolution of specific leaf area, leaf dry matter content, leaf nitrogen and phosphorus content per dry mass, and leaf nitrogen/phosphorus ratio. The processing chain exploits machine learning techniques along with optical remote sensing data (MODIS/Landsat) and climate data for gap filling and up-scaling of in-situ measured leaf traits. The chain first uses random forests regression with surrogates to fill gaps in the database (> 45% of missing entries) and maximizes the global representativeness of the trait dataset. Plant species are then a…
Facebook groups as citizen science tools for plant species monitoring
2021
I social network sono canali di comunicazione utilizzati per condividere enormi quantità di dati, che possono essere utilizzati per la ricerca scientifica, anche nel campo della biodiversità. Per sapere quanto i dati ricavati dai social network possono integrare quelli raccolti per scopi scientifici, è necessario individuarne i bias. Utilizzando i dati estratti da un gruppo Facebook specializzato nella flora vascolare siciliana, abbiamo analizzato quali sono i caratteri che aumentano la probabilità che una pianta spontanea venga fotografata e postata su un social network. A tal fine, abbiamo confrontato frequenze e attributi delle specie fotografate dai membri del gruppo Facebook con quelli…
Global Estimation of Biophysical Variables from Google Earth Engine Platform
2018
This paper proposes a processing chain for the derivation of global Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Fraction Vegetation Cover (FVC), and Canopy water content (CWC) maps from 15-years of MODIS data exploiting the capabilities of the Google Earth Engine (GEE) cloud platform. The retrieval chain is based on a hybrid method inverting the PROSAIL radiative transfer model (RTM) with Random forests (RF) regression. A major feature of this work is the implementation of a retrieval chain exploiting the GEE capabilities using global and climate data records (CDR) of both MODIS surface reflectance and LAI/FAPAR datasets allowing the global estim…